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CONCENTRATION  PROFILE  ESTABLISHMENT 

OF BINARY GAS MIXTURE IN SWIRL 

AND DUCT FLOWS 

by  Timothy W. Kao 

ABS TRAC T 

A study is made of the  establishment of density  profile  for a 

two-fluid  single  phase  gas  mixture  under a body fo rce   f rom a uni- 

formly  mixed  upstream  condition. An inviscid  hydrodynamical  model 

is adopted. Two cases   are   considered.   In   the first case  the  flow is  a 

swirling  motion  and  the  body  force  is  provided by the  centrifugal  action 

of the  swirl .  In  the  second  case  the  flow is a duct  flow  confined  between 

two  parallel  walls  with  potential  body  force.  Use is made of a per turba-  

t ion  procedure  in  terms of an  expansion of the  reciprocal of a diffusive 

"Reynolds1'  number  to  obtain a closed  form  zeroth  order  solution.  The 

o rde r s  of the  higher  order  correction  terms  are  explicit ly  given.  The 

interplay  between  Fickian  and  baro-diffusion is  brought  out,  and  asymp- 

totic  solutions far downstream of the  inlet  are  explicitly  calculated  for a 

c lass  of swirling  f lows.  The  problem  bears  on  various  phenomena 

where a knowledge of the  concentration of the  heavier  component is im- 

portant,  such as in  gaseous  nuclear  cavity  reactor  propulsion  devices. 
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1 .  INTRODUCTION 

For many industrial purposes it i s  desirable  to  know  the establishment o f  strati- 

fication  for a two-fluid single phase f lu id system in the presence of  strong  body forces. 

In  particular, i t  i s  very  often necessary to  know  the concentration  of  the  heavier species 

a t  various  points downstream o f  the inlet where  the  two fluids are uniformly mixed, and 

the shape of  the  established  density profile. This knowledge i s  needed, for example, 

in  gaseous nuclear  propulsion  device(’) where  the heavier  fluid i s  uranium, and the 

critical  concentration for  the onset of  reaction i s  of paramount importance. In most 

problems of  this nature  the body force i s  usually a centrifugal force, and  for high flow 

velocities the  effect  of  viscosity i s  generally  negligible. The dominant effect i s  one 

of  mass diffusion. 

In this paper an  inviscid, incompressible, hydrodynamical  theory i s  proposed. 

Strictly speaking  the thermodynamics o f  the system  has to be considered  together with 

the mechanical equations in  order  to obtain a complete set o f  equations (see for example 

Landau and  Lifshitz(*)). However, when the  change of  density of  the fluid  mixture taken 

as a whole i s  assumed to be proportional  to  the change in  concentration  of  the  heavier 

fluid, a purely  mechanical  consideration suffices  and thermodynamics can be left   out  of 

the  analysis. This o f  course results in a  major simplification  of  the problem. A perturb- 

ation scheme i s  then used to solve  the problem, which i s  here  considered as a  two-dimen- 

sional flow. 

( 1 )  The specific model envisaged i s  one of doughnut shape which i s  thus not  affected by 
the viscous end-wall boundary layer  which i s  important in  cylindrical models. 

(2) L. D. Landau and E. M. Lifshitz, Fluid  Mechanics. Addison-Wesley  Publishing Co., 
Inc., Reading, Mass. pp. 21 9-227. 
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Two  cases are  considered. In  the  first case the flow i s  a  swirl  motion and the 

body force i s  provided by the  centrifugal  action of the swirl. In the second  case the 

flow is  a  horizontal  duct  flow  with  a  potential body force  in the vertical  direction. 

2. THE GOVERNING EQUATIONS 

The equation of  continuity  for the  total mass of   f lu id i s  

where p i s  the total density of the fluid and 21 denotes the velocity. We note  that 

velocity i s  here understood as the total momentum per unit mass of  fluid, and the equa- 

tions of  motion are the Euler's  equations 

"-+ 

where 'p i s  the pressure, 7 i s  the body force  and Dt E ( x + T. ~7) 

i s  the  substantial derivative. 

D a 

If we  denote  c  to be the mass concentration  of  the  heavier  fluid, the equa- 

tion  of  continuity  for  that species i s  

where i i s  the mass flux  of  that species. The  mass flux i s  made up  of three  parts 
4 

where D i s  the  diffusion  coefficient  or mass transfer coefficient 

kt i s  the  thermal diffusion  ratio 

kP 
i s  the barodiffusion  ratio 

and T i s  the  absolute  temperature. 

- 3 -  



kt and k are  determined by thermodynamic  properties alone. For the purpose 

of  this analysis i t  can  be shown (see Landau and Lifshitz(*)) that k i s  negative. 

In the  present  analysis  we  shall assume a uniform temperature distribution so that 

P 

P 

* 
1 = - p b %  - w p 3  9 (5)  

where k, E - @ i s  positive. From the  above equation we can  conclude a t  T 
once  that  equilibrium i s  reached when the flux due to mass concentration i s  balanced 

by the pressure flux. 

Substitution of  (5)  into (3) yields 

( l ) ,  (2), and (6) are f ive equations  for the six unknowns, c, f' , p, v . 
To complete  the system we assume that the change of  density of the fluid  mixture 

taken as a whole i s  proportional  to the  change in  concentration  of the  heavier  fluid,  i.e. 

"c 

where f' i s  a  constant of   proport   ional  i ty. Us i ng the above equation, 

we have from (6), 

3. SWIRLING FLOW 

The flow i s  assumed to be a swirling  flow  in a cylinder as shown in  Figure 1 . 
We further assume the flow to be independent o f  z , which i s  along the  axis of the 

cylinder,  but 0 can increase indefinitely. r denotes the radial  direction. The 

velocity components corresponding to (a, e) are  denoted  by (ur, we). The equation 
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of continuity  can then be written as 

The equations of motion are, 

The equation  for the density of the mixture i s  

where  we have  taken D and k to be constant, and P P 2  

v='. 5 % P T b  l a  a +jps \ a' i s  the  two-dimensional Laplacian  in  cylindrical 

co-ordinates 

We first  non-dimensionalize our  problem with a  reference  length L = radius 

of cylinder, a  reference velocity U = maximum velocity  at  inlet, and a  reference 

density to = density at  inlet. We denote 'u. s ur / u  and 'U = 7,(o/cJ , =g ' 
€E"-- ' % S n d  the rest of  the symbols are  the same  as the dimensional ones. 

The non-dimensional forms of equations (9), (IO), (1 l ) ,  and (12) are 

c 

sp= w, K2= L 
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It i s  now  to  be  noted  that aD - - - '" i s  a "diffusive Reynolds number". - D  
For a l l  cases of  practical interest this number i s  very large, that i s  E i s  small. 

Physically this means that  the mass diffusion  rate i s  small compared with  the  velocity 

of the flow. Also  for  baro-diffusion  to be significant K2 4 E .  Normally k2 i s  

very small but K2 can be seen, for high  swirl  veloc i t y  , to be of order . Equation 

(16) then indicates  that E .  Thus (13) becomes: 
Dt 

Since 6 i s  associated with the  highest  order terms of the  equation, we have 

a "singular" problem. Thus we assume an  "outer" expansion of the form 

f ( R , d j e )  = f,(~,e) + g f , ( n , e )  + ~ ' k C n , e > +  . - 
where f denotes any of  the  variables. Equations (13) to (16) are  then to the zeroth 

order  the non-diffusive equations of  motion  with solutions u0 = 0 , W, = 2/,ch), 

P, = po(h) and P, = t , , ( h )  . It w i l l  be seen that  the  solution for Po cannot 

satisfy  the boundary condition  at 8 = 0 except  for  the  trivial case where f remains 1 . 
0 

Higher order terms of this expansion wil l   not be able to  satisfy a l l  the boundary conditions 

o f  the  problem by  virtue of the singular  nature of  this problem. 

We now seek an "inner" expansion. To do  that, we make the  transformation (3) 

(3) Alternately, we can say that we make a  "boundary-layer"  type assumption that 

- 4  and br~l ; an assumption which can be verified a posteriori. 
l a  

a& - 
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and write a l imi t  series expansion of  the  type 

and i s  required  to satisfy  the boundary conditions a t  8 = 0 and  the  condition  of 

zero  f lux  at the wall. This immediately  indicates  that u = 0, vo = vo (r) as 

before.  We thus take  a  perturbation expansion of  the form 

0 

and see whether  there  exists  a  d i s t  i ngu i shed l imi t  for /u, (e) consistent with a 

l imi t  series expansion of the type shown. From (17) we see that  for  the  zeroth  order 

solution, i t  i s  identically satisfied, and to the next order, we see that  the  first term 

i s  of  order /cc, (E) and  the second  term i s  of  order E . Thus continuity demands that 2 

/U,Cc) - cz= 
We thus write 

21 = E 2 a ,  CR, 9,) + 1, ( 0  U2 Ch, 0 , )  -t - - - 
where /cL2 (E) i s  of  order  higher than E . 2 

Substituting the  above series into (14) we have to the zeroth  order in E : 

and from (15) and (16), we  have to the first order in € : 
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and 

where Y = P+ . Substitution o f  (18) and (19) into (20) then gives: 

Equation (21) i s  to  be  solved subject  to  the boundary conditions  that the flux i s  

zero at  the wal I of the cy1 inder, r = 1 i .e., 

A t  r = 0, Po has to be bounded. At 8 = O  , 4 = 1 and fo i s  bounded as G-+ 4 .  

The boundary value problem for to i s  solvable by  separation of variables. 

We note of  vo (R) i s  arbitrary as one  expects  from  the inviscid assumption.  We let  

fl (LJ0 , )  = R ( ~ I N 0 , )  I 

Substitution o f  the  above  into (21) and  the  boundary conditions  yields 

to the  argument. 

Equation (26) yields  at once  the  solution 

H - e- A% = e- r k  e (27) 
2 

which shows that * lu g and 2a H EL. It also shows that as 8 4 dl, H 3 0 

unless = 0. The  case x2 = 0 yields  a  particular  solution  which i s  independent 

29 >e 
2 
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of  8 and i s  the  asymptotic  solution  that i s  of  interest in the present problem. This 

further  indicates  that  matching i s  automatically  achieved so that the  inner solution 

i s  uniformly  valid for a l l  r and 8 . Before examining these solutions we first inves- 

tigate  the  solutions o f  the boundary value problem given by (23), (24) and (25). This 

system i s  an  eigenvalue problem with A as the eigenvalue. The nature of the solution 

depends on  the  nature of the  function v (I) . In general i f  VI (r ) i s  an analytic  function 
0 0 

o f  r p  then r = 0 i s  a regular  singular  point and series solutions can be easily  obtained. 

Since any velocity  profile can be approximated by polynomial functions,  the present 

formulation i s  quite general. 

-ln224'db 
with the  weight func t ion  = v (A) e 't . We now show that = 0 i s  an 

0 

eigenvalue,  which means that  there exists a  solution to the original problem which i s  

independent of 8 . In other words, there  always exists an  asymptotic  solution  for . 

8-c.Q. Physically  this i s  simply  a statement that a  balance i s  achieved between Fickian 

and baro-diffusion. Mathematically this  can be easily shown. Indeed  for A= 0, 

the differential  equation (23) becomes: 

( R q ' ) '  - 3(2/,2R 1' = 0 . 
Therefore 

[" &zdb 
s = c , e  IL 

> 

and  the boundary conditions are identically satisfied.  Hence Q -- C, e k 

i s  an  eigenfunction  corresponding  to X = 0, which i s  thus an  eigenvalue o f  the 

problem. If we  denote yj b) as eigenfunctions corresponding to the  eigenvalues 
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"j , then we can  write our solution as 

At  8 = 0 , 1 = I . Therefore  the  Fourier coefficients Cj are  given by 

has a physical  meaning.  !t  simply expresses the  conservation of mass flux  which  of 

course should be satisfied. 

Some expl i c i t  cases (4) wi II now be given  for the sake of  illustration: 

:nn , n = 0, 1 ,  2, 3, . . . 
For n =O, v = 1 ,  c = \1+ 1 .  Therefore Ls()'+l> . We  shall  henceforth 

denote  the  asymptotic form of by f4 . Equation (23) can be recognized as a 

modified form of Bessel Is equation, with general  solutions 

0 0 

Thus both terms are bounded at r = 0. A more careful  examination  of the system 

here  reveals that while  the subsequent examples in this case belong  to  Weil's 

"limit  point'' case(5' , this particular example  belongs to  the  "limit  circle" case. 

If one demands the boundary condition E = 0 at r = 0, one particular  point on 

(4) The author i s  indebted  to Ying M. Shy for the detail  calculations. 

(5) Coddington  and Levinson, "Theory of  Ordinary  Differential Equations, " McGraw 
Hi l l  Co. 1955. 
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the  l imit  circle i s  determined, and  an  expansion involving & only i s  arrived  at. 

Physically this boundary condition i s  an  appropriate  one  since a t  r = 0 the  centrifugal 

force i s  infinite. Using this boundary condition  we thus have 

Substitution o f  the  above into (24) yields 

3Y JY&) - d Sf(&) = o ~ 

which i s  the  secular equation. The roots of  this equation  are  the  eigenvalues  of  the 

present problem. If we let d. be the roots of  this  equation,  then a 

The  graphs of for  various  values of are shown in  Figure 2.  

Therefore 'd I 
2 c7'z - 1 

e @ P- - " 
The graphs of A for  various  values of  Y are shown in Figure 3.  Figures 4, 5 

show E for n = 2, 5 . The c 's have  not been explicitly  calculated and  for 

convenience  of  drawing  suitably chosen constants are used. For n = 2, fd s C, e 

and for n = 5, fd = C o e z  . 
e 

0 

an'" 

Case 11. v @) = IL ( 1  - I t )m r a  - (a + b )R7  , e , m , n are 
n 

0 - -. 

positive integers, and a, b 0 .  This class of  profiles  exhibits reverse flows. 

Figure 6 i s  for v = 9.48 k3(l-@, then = co e ' *' where 
0 

f. = 4r2 ( 2 -  $L+ d). 
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Figure 9 i s  for vo= 7 . 4 ~  ( 1  -It) ( 3  - 4b)  , then pm = c6 a 

where f = 5 5 ~ '  (9 - % ~ L - ~ I L  3 1  - 8 ~ ~  3 + 2a') . 
2 l o j  

It may be noted  that  with reverse flow,  the  region of  high  concentration  can be made 

to spread out and thus reduce  the  concentration in the  immediate  neighborhood  of  the 

wall .   In  al l  cases  co  has been assigned a value for convenience  of  drawing. 

Case 1 1 1 .  v o x  h . This case i s  o f  special  interest  since i t  corresponds 

to the case where  the centripetal  acceleration i s  constant  along the radial  direction. 

In this case equation (23) becomes 

RR" t. ( I  -dL) #'- (Y -x"&) Q = 0 - 
The eigensolution  for X 2  = 0 i s  c,, eym . By setting X =& , the above 

equation becomes 

+ C I - ~ Y Z ~ ) R '  - 4 ~ ( Y - X ' X )  R = 0 ,  
and the boundary condition becomes 

R'CI) - 2'6 R h  = 0 at x = f  . 
The eigenvalue problem can  be solved as i n  the  previous cases. The asymptotic  solution 

for  large 8 i s  an exponential density profi le  which  wil l be seen to be the same  as the duct 

flow to be considered in  detail  in  the  next  Section. The graphs for /=" for this case 

are plotted  in Figure 10. Again the constants are chosen for  convenience  and  have  not 

been explicitly  calculated. 
- 12 - 



4. DUCT FLOW 

It is  seen from Section 3 that  the  actual  numerical  calculations  of  the 

eigenvalues  and  eigenfunctions in  most  cases involve considerable  computational 

labor. In order to  illustrate some additional features of  this problem  an explicit 

calculation i s  made for  the case of  a duct  flow  with a  constant body force. This 

situation corresponds most closely  to  the case 2/ , (~)  = & in the  previous Section. 
k 

The.flow i s  assumed to be steady and  two-dimensional  and bounded by two parallel 

walls  at y = 0 and y =  L as shown in Figure 1 1 .  The body force  acceleration 

i s  taken  to be in  the  negative  y-direction and may  be much larger than  the accel- 

eration  of  gravity. 

Following the same procedure as for the swirling  flow we arrive  at the 

following dimensionless equation  governing by grouping terms of   l ike orders 

in E (6) . 
(", 

inlet, assumed constant, and 81 = E X .  The boundary conditions are: p0 = 1 at 

x = 0, pO i s  bounded as x+ ob , and at  y = 0, 1 , 

By separation of variables, the  solution  to the above  problem i s  
m 

(6) Reference can be made to Kao (1965): "On the Establishment of  Density  Profiles 
for the Flow of a  Two-Fluid  Single Phase Gas Mixture. 'I Tech. Rep. No. 65-005. 
Dept. of Space Science 8, Appl . Physics,  The Catholic  University  of America, 
Washington, D. C. 
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with respect to the weight  function 2% in the  interval (0, I . C,, are  the 

Fourier  coefficients  given by 

and 

v' -%& 
From the  solution i t  i s  immediately  clear  that as x+&, R 4 - e 

I - e  -Y 

It i s  also seen that the  important parameter of  the problem i s  of course the  ratio Y . 
If y i s  fairly small then f wi l l  remain  essentially  constant  since  baro-diffusion 

i s  not  effective. If i s  large  then  the  heavier gas sinks to  the  bottom. For some 

0 

physically  realistic  value there i s  of  course a  balance between baro-diffusion and 

mass diffusion and  the asymptotic form of  P, above indicates the equilibrium 

distribution. I t  has an  exponential  behavior and the approach to  equilibrium i s  

also exponential. It i s  seen that the series converge  rather rapidly for a l l  ;r> 0 . 
Figure 12 shows the  asymptotic  density profile for  various  values of, . 

Figure 13 shows the density  profiles  for  various  values  of at  x1 0.1 and  Figure 

14 shows the evolution  of the  density profile  at various  points downstream from the 

inlet for  a typical case ( = 3.0). Figure 15 shows the distances downstream of 

inlet where 90, 95, 98 per cent  of asymptotic profile i s  established as function  of . 
It exhibits  a maximum distance  for  appraximately  equal  to 2. 
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